
Process Inspection Support: an Industrial Case
Study

Christoph Mayr-Dorn
Institute for Software Systems Engineering

Johannes Kepler University, Linz
Linz, Austria

christoph.mayr-dorn@jku.at

Johann Tuder
formerly ACME

Linz, Austria
johann.tuder@gmail.com

Alexander Egyed
Institute for Software Systems Engineering

Johannes Kepler University, Linz
Linz, Austria

alexander.egyed@jku.at

Abstract—Organizational factors such as team structure, coor-
dination among engineers, or processes have a significant impact
on software quality and development progress. Projects often take
much longer to complete than planned and miscommunications
among engineers are common. Yet, the process for exploring
the project-specific or organization-specific root causes why this
happens is still poorly supported. Investigations are cumbersome
and require significant effort. In the context of this industrial
case study, our industry partner was interested in measuring
and assessing how the organization structure and issue handling
processes ultimately affected software quality and time. Reducing
the effort of such investigations/retrospectives and speeding up
fact finding is important as it allows for more frequent, informed
engineering process improvements and feedback to managers,
team leads, and engineers. This paper describes our approach of
pairing process metrics with visual historical inspection of issues.
Stakeholders such as managers, team leads, or quality assurance
engineers inspect metrics (and deviations from expected values)
for individual issues and utilize a historical visualization of the
affected (and related) issues to obtain insights into the reason
for the metric (deviation) and its root cause. We demonstrate
the usefulness of our approach based on our ProcessInspector
prototype providing access to data on four real industry projects
and a qualitative evaluation with team leads and group leads
from our industry partner.

Index Terms—issue, organizational structure, software engi-
neering process, metrics, prototype, JIRA, history visualization

I. INTRODUCTION

Software engineering projects often last much longer than
planned and miscommunication between engineers occurs on
a regular basis. The process for exploring the exact project-
or organization-specific root causes why this happens is still
poorly supported. Investigations are cumbersome and require
significant manual effort. Retrospective analyses, such as done
at the end of sprints in agile development environments, are
important to happen jointly as a group effort but benefit signif-
icantly from tools that assist in better understanding the cause
of undesirable situations such as missed milestones. Reducing
the effort of such investigations/retrospectives and speeding
up fact finding is important as it allows for more frequent,
informed engineering process improvements and feedback to
managers, team leads, and engineers.

Research over the past decades has shown that organi-
zational factors such as team structure, coordination among

engineers, or processes have a significant impact on software
quality and development progress [1]. Engineers working on
strongly coupled artifacts tend to require frequent commu-
nication to coordinate their engineering efforts [2]. Hence,
achieving socio-technical congruence (STC) is one aspect
towards improving software development performance [3].

Therefore, in the context of this industrial case study, our
industry partner was interested in measuring and assessing
how its organizational structures and issue handling processes
ultimately affect coordination among engineers and timely
delivery in order to obtain insights in how and where to focus
on improvements. Typically, software process metrics provide
such insights and multiple research efforts aim to improve
them [4]–[7]. Yet, determining which metrics are useful and
accurately describe the ongoing development efforts is non-
trivial as this differs among companies and often also among
departments and groups within the same company.

To this end, we propose an approach of pairing process
metrics with visual historical inspection of issues to overcome
the limitations of metric inspection without context on the
one hand and visualization without guidance on the other
hand. Stakeholders such as managers, team leads, or qual-
ity assurance engineers inspect metrics (and deviations from
expected values) for individual issues and utilize a historical
visualization of the affected (and related) issues to obtain
insights into the reason for the metric (deviation) and its
root cause. We designed the accompanying prototypical tool
(Process Inspector) light-weight and flexible to support easy
integration and adaptation of metrics. We demonstrate the
usefulness of our approach based on a prototype providing
access to data on four real industry projects and a qualitative
evaluation with team leads and group leads from our industry
partner.

The contributions of this paper are:
• A flexible approach for combining process metrics and

issue history visualization
• A prototypical tool implementation (Process Inspector)
• A data set describing the complete set of issues from four

industry projects
• A qualitative evaluation of the approach
The remainder of this paper is structured as follows: Section

II provides case study background information. We introduce



our approach in Section III and the corresponding prototype in
Section IV. We qualitatively evaluate and discuss our approach
in Section V. Section VI compares our approach to related
work, before Section VII concludes this paper with an outlook
on future work.

II. CASE STUDY BACKGROUND

A. Industry Context

ACME is in the business of hosting a recreational activities
web platform. The company’s identity and project names
have to remain confidential due to the sensitive nature of the
analyzed data. At the time of data extraction and paper evalu-
ation, the company was structured into ten departments. Those
departments consisted of 22 groups. The following groups
are of primary interest for this paper: software developers-
frontend, software developers-backend, database, graphics,
quality assurance, and product & project management.1 These
groups are heavily involved in the software development
process. The departments are physically distributed across two
buildings. A project team usually consists of at least one
member from each of the above listed groups of interest. When
a project’s software is released for public access the project
team remains responsible for maintenance. This implies that
the team works together during the product’s complete life-
cycle from initial project setup, to implementation, and on-
going support even though team members are situated in
different offices. This cross-departmental/group organization
style comes with a significant number of necessary meetings
and informal communication channels within the team. From
experience, this often resulted in miscommunication, unclear
assignments, and in undocumented decisions in any of the used
tools: the company uses JIRA, Confluence, Skype, rocketChat
and Outlook to keep track of projects. JIRA is used as
ticketing system and also provides further information such as
comments and lists of changed source code files. The intended
process to follow for software development is reflected in
JIRA issues, issue relations, and issue properties such as state,
milestones, releases, and assignee.

B. An Industry Challenge

As most software development companies, ACME is in-
terested in improving its workflows and software develop-
ment process. After each completed major project the current
process is evaluated and adapted to fit new organizational
circumstances such as new teams. To this end it needs to
compare differences among teams at project and at issue
level (e.g., issues bottlenecks at a specific group) to establish
how differences in process and structure affect performance.
ACME also needs to distinguish if problems result from
e.g. workflow flaws, inefficient organizational structure, or
insufficiently accurate artifacts such as unclear requirements.
Given ACME’s organizational structure, a particularly inter-
esting question was whether vertically organized teams (team

1We identify a member of such groups as an engineer and use the term
developer when explicitly referring to a member from the frontend or backend
group.

members from different groups become co-located) perform
better than horizontally organized teams (team members from
different groups remain with their groups). This evaluation
process is cumbersome currently as the reasons for deviations
and comparisons across teams and projects are not easily
obtainable from ACME’s tool landscape.

C. Process Improvement Method

One typical approach to process improvement is through
a Goal-Question-Metric (GQM) driven method [8]. In the
context of our industry partner, the purpose of such a study
is to evaluate the impact of the current team structure and
issue ticket usage on efficiency and coordination effort from
the point of view of team-leads (manage projects) and group-
leads (manage an expertise-centric set of engineers such as
testers) in the context of lightly distributed teams.

According to the taxonomy by Smite et al. [9], ACME’s
teams can be classified as Location: Onshore, Legal Entity:
Insourcing, Geographic Distance: Close, Temporal Distance:
Similar. These teams can nevertheless be considered dis-
tributed as already a separation by floors or buildings can
significantly reduce informal contacts and thus influence co-
ordination [10].

ACME identified four key questions that they need to
answer on their path to process improvement:2

1) Is engineering effort accurately estimated?
2) How much coordination is happening?
3) How efficient are coordination actions?
4) How efficient is project planning?
Here questions and metrics (see Section III-A) are iteratively

refined upon feedback from our industry partner.

Fig. 1. Approach to assisting process inspection in the scope of a GQM
method: full/black arrows show input/output between GQM steps, dashed/blue
arrows depict supported feedback between steps applying the Process Inspec-
tor prototype.

III. APPROACH

Our approach (see Figure 1) supports the stakeholders
during metric interpretation by pairing metric calculation (and
presentation) with issue event timelines as metric context. As a
side effect, our approach assists the stakeholders to determine
which metrics are useful and applicable in measuring process
improvement (in our case study with a focus on the subgoal
of measuring team coordination).

2Note, that these are not the research questions to be answered in this paper.



The GQM method (as applied by ACME) typically consists
of following six steps:

1) Define improvement goals.
2) Develop questions that allow the goals to be quantified.
3) Determine which metrics answer these questions.
4) Implement data collection mechanisms.
5) Collect and interpret the metrics for immediate feed-

back/improvement.
6) Assess how the gathered metrics support reaching the

goal and derive recommendations.
Deriving accurate and meaningful metrics is difficult as

their measurement context changes over time (e.g., teams are
restructured, processes change) or they become applied in
situations they are not sufficiently suitable for (low priority,
short term, technology exploration project). As a consequence,
metrics need careful interpretation in their measurement con-
text.

Our approach addresses this concern by supporting a stake-
holder to easily move between metric calculation, respectively
inspection, (here on the level of issues) and the context that
gave rise to that particular metric instance (here the history of
the issue and its related issues).

In our particular case, this allows a stakeholder to become
aware (at a coarse-grained level) of projects that seem to be
poorly performing, and (at a fine-grained level) of issues that
need attention. The stakeholder then inspects the visual history
of these issues that give raise to a critical metric value to
understand if there is truly a problem at hand, whether the
particular situation constitutes an exception to the rule, or
whether the metric is not suitable (anymore) in the larger
context of this project. For example, metrics that measure how
long an issue is in state Open and In Progress before it is
Closed become unreliable when engineers forget to transition
an issue upon starting their work and only briefly set the
issue to In Progress shortly before completing it. This type of
deviation from expected behavior results from the flexibility
engineers require. Too rigid, explicit process control greatly
limits engineers’ freedom, respectively forces engineers to
work outside the process to handle unforeseen situations
and optimizations not foreseen by the process. Diebold and
Scherr [11] show that in industrial practice the majority of
processes, therefore, focus on description rather than using
formal notations or models. Visual inspection provide, on the
one hand, rapid feedback on the brittleness of metrics and,
on the other hand, point out potential for tool improvement to
assist engineers in following the intended process.

Likewise, the timeline visualization allows stakeholders to
browse issue progress and, upon finding suspicious looking
event sequences, the stakeholder can easily cross-check with
metrics how that particular issue measures against other (sim-
ilar) issues.

In short, our approach, respectively prototype, directly ad-
dresses step 4 and 5 of the GQM method, and indirectly
supports the re-evaluation of metric selection in step 3.

Ultimately, the research question addressed in this paper
(and answered in the evaluation section) is: Is the combination

of the provided process metrics and issue history visualization
effective for obtaining insights into coordination problems?
Note that its not a goal of this paper to investigate whether the
proposed metrics, our approach, or the GQM method indeed
lead to process improvement.

A. Metrics

We selected the following set of metrics and refined them
together with engineers at ACME to ensure they are relevant
in ACME’s development context. The metrics come at various
granularity levels: per-issue, per-occurrence (multiple times
per issue possible), informational/aggregating (information at
issue level, project-level metric value).

1) Issue resolved/closed date <= issue due date: The
resolved date is set e.g., if an engineer finishes a bug-fix
implementation. The closed date is set when e.g., a tester
finished testing of a bug-fix. In the ideal case every issue
should be closed before its due-date. For this metric
the relevant fields of an issue are the closed-, resolved-
and due-date. A negative difference value describes
an issue that was closed/resolved before its due-date,
a positive value that it missed it’s due-date deadline,
respectively. Large deviations in either direction are in-
dicators of estimation errors. Positive deviations indicate
that engineers required less time, negative deviations
indicate unforeseen complexity in implementation or
coordination. (per-issue metric: duration in days)

2) Due dates aren’t changed: Due dates are set at the
beginning of a project. Project managers and engineers
then arrange the workload and determine when the
various components of a project should be completed.
Due date changes indicate that project planning was not
accurate (e.g., lower/higher effort/coordination estima-
tion) or an assigned engineer (no longer) needed to work
on a higher prioritized task. Specifically, this metric
counts the number of due-date changes per issue (not
considering the initial setting of the due-date, which is
also a change event) and derives an project overall ratio.
(per-occurrence metric: duration in days for from/to due
date change; project-level metric: ratio of “issues with
changes” compared to “issues without changes”)

3) Fix version wasn’t changed: A fix version identifies the
release or milestone this issue’s result should be avail-
able in. Fix version changes reflect issues being moved
between milestones during planning or implementation
(or even when already completed). Many such changes
may indicate challenges in project planning and also the
release workflow. This metric is calculated similar to
M2 but based on changes to the fix version property.
(per-occurrence metric: changes: count of from/to fix
version changes; project-level metric: ratio of “issues
with changes” compared to “issues without changes”)

4) Duration in approve state: Some issues have to be
approved by team leads before work can start. Usually
such an approval process does not take very long and this
metrics informs the responsible decision maker when



delays happen repeatedly. Approval delays block the
actual engineers from working on the issue. This metric
is calculated only for issues that have had a status
changed to “Approval necessary”. The temporal distance
to the next status entry is then the metric value. (per-
issue metric: duration in days)

5) Re-open distance to due date: Issues that are re-opened
multiple times might indicate an engineer-to-issue as-
signment mismatch or unclear/incomplete requirements.
Whenever an issues state is changed to “Open”, “Open
Again” or “Reopened” the change date’s difference to
the due date is calculated. A positive value describes
re-opening after the due date, a negative value a re-
opened before the due date. (per-issue metric: how often
changed; per-occurrence metric: how long before due
date in days)

6) Assignee Changes: Assignee changes are part of the
workflow. For example, a project manager creates an
issue and assigns it to an engineer. After the imple-
mentation the issue is assigned to a tester. A high
number of changes potentially indicates communication
problems between departments or that an issue was not
implemented correctly. Especially assignments within a
department, e.g., from front-end developer to another
front-end developer, should not happen. Therefore the
metric is split into the number of intra-department
changes and the number of cross-department changes.
(per-issue metric: number of changes)

7) Use of comments: ACME expects complex issues to
require additional refinement and clarification via com-
ments, especially when an issue involves engineers from
multiple departments. This metric subset also provides
an indication whether discussions, decisions, and as-
sumptions are documented within Jira or using other
tools. (per-issue metric: comment count, commenter
count, count per commenter, min/max/avg comment
length).

8) Issue re-assignment without documented communica-
tion: Changing the assignee typically requires no doc-
umentation when the engineers follow the intended
workflow, e.g., a developer finishes the implementation
and a tester has to start. However if an issue re-
assignment happens multiple times and deviates from
the usual workflow then this should be documented in
the comments. The metric uses the changelog entries of
type “assignee”. The metric counts for each issue, how
many pairs of such changes exist without a comment
in between. For each of these change pairs, the metric
also collects the duration between assignment changes
in days. (per-issue metric: number of assignments, to-
tal duration in days between two assignments without
comment)

9) Issue re-assignments without status changes: Usually an
issue is re-assigned to another engineer if the issue’s sta-
tus changes, e.g. the developer finishes implementation
and sets the status to “Resolved”, assigns it to a tester

who changes the status to “In Testing”. If issues are
re-assigned without a status change something could be
wrong either in the workflow or how engineers handle
issues. This metric uses the same assignee changelog
entries as the previous metric M8 but considers status
changelog entries instead of comments. (per-issue met-
ric: number of reassignment, total duration between two
assignments without status change)

10) Duration between re-assignment and subsequent sta-
tus change: Issue re-assignment indicate that another
engineer can start their work, indicating this start by
updating the issue’s state (see previous metric). This
metric measures for each re-assignment the duration
until the subsequent status change. A long timespan
could indicate that the assigned engineer is overloaded
and that the issue should have been better worked on by
someone else, respectively that project planning over-
looked/created a bottleneck. (per-issue metric: duration
in days)

11) Issue resolved date compared to code freeze date: The
metric shows the difference between the resolve date
of an issue and the code freeze date. Usually issues
should be resolved before code freeze because during
code freeze no new features are implemented for the
current milestone and the time to release is reserved for
bug fixing and testing. Issues resolved after code freeze
indicate work overload and wrong project planning or
normal bug fixing. A positive value indicates that an
issue was resolved before the code freeze, a negative
value the opposite. (per-issue metric: difference in days
to code freeze date)

12) Issue of future milestone started in an earlier milestone:
The metric calculates the time span between the first
progress of an issue to the start date of its milestone’s
predecessor. This metric highlights which and how many
issues of a project were started earlier than planned.
This indicates that some engineers do not have enough
issues assigned or that project planning was not accurate
enough: towards the end of the milestone, engineers
were already doing work for another milestone and they
could have moved more features into the current one.
A positive time span shows that an issue was started
before the official milestone start, a negative number
shows the opposite. (per-issue metric: difference in days
to milestone)

All these metrics rely on a small set of issue change event
(i.e., timeline events). Displaying them in their temporal order
as they have occurred (sometimes in isolation, somethings
almost simultaneously) allows to better place the metric values
in the engineering process context.

B. Issue Timeline Events

The selected issue timeline events are driven by the metrics
that make use of these events. As such, these events are
exemplary and we make no claim for completeness (addi-
tional/different metrics may introduce other events). These



events, however, are central to coordinating engineering ef-
forts. In general, we distinguish between two event categories:
events that are placed at the time they occurred and events that
represent predefined dates such as fix-versions and due dates.
The currently considered event list comprises:

1) created: marks the date the issue was added to the issue
tracker (here Jira).

2) status: marks changes to the status, e.g., from “Open”
to “In Progress”.

3) assignee: marks handing over the ticket from one re-
sponsible team member to another.

4) fix version set: marks changes to the release version in
which this issue should be included.

5) resolved: marks when the issue was set to resolved.
6) due date: marks when the issue is planned to be com-

pleted.
7) due date changes: marks updates to the due date.
8) comment: marks when a engineer commented on the

issue.
9) last updated: marks the last change to any of the issue

properties.

Fig. 2. Prototype Architecture.

IV. PROTOTYPE TOOL SUPPORT

In this section we present the current prototypical tool
support for calculating metrics and inspecting issue histories.
We deliberately aimed for a maximally light-weight prototype
to allow for rapid prototyping and iterative refinement.

The current prototype (see Figure 2) consists of three
main components: the Jira Extractor, a Database for caching
processed issues, and a Web Frontend for calculating and
displaying metrics and issue history.

The Jira Extractor is responsible for accessing a Jira
server’s REST API for retrieving all issues of a given project
as json documents (in our industry partner’s case identified
by a root issue with all related issues obtained via an issue’s
“Part” relations). It then reads an engineer’s department from
a configuration file, anonymizes the engineer id, prepends the
department id to the anonymized engineer id, and replaces this
throughout the issue json document before storing each issue
json document in the CouchDB.

CouchDB is a schemaless JSON database merely used to
store the processed issues and making them available to the
Web Frontend.

The Web Frontend is a locally hosted HTML page making
heavy use of javascript libraries for calculating and displaying
metric result tables, timeline visualization, and connecting

(directly) to the CouchDB. The set of metrics can be easily
adapted as each metric is implemented as a separate class and
located in its respective, separate javascript file (e.g., metric 1
in M1.js). Each metric class simply needs to provide a cal-
culate, getDataTable, and getSummaryDataTable method for
triggering metrics calculation across all issues of the project,
returning the overall metric result table with values for each
issue (for per-issue metrics) or occurrence (for per-occurrence
metrics), and a summary table displaying, for example, av-
erages, maximum, and minimum values (customizable per
metric), respectively. A standard workstation is sufficiently
fast to carry out issue retrieval (from the CouchDB), metric
computation, and visualization on demand without the need
to include server side data (pre)-processing facilities. The
Web Frontend consists of the following UI elements (see also
Figure 3):

• Project Selector (A, top left corner) is a dropdown input
that allows the user to pick a project. Each project is
stored in a separate “database” in CouchDB.

• Timeline Scope (B, left) enables the user to select start and
end dates for the timeline. The timelines for all visible
issues shrinks or expands to the desired values. A press
on the “Reset to default Dates” button adjust all timelines
to the default values.

• Metric Selector (C, left) allows a user to switch between
indiviual metrics (one at a time). Upon selecting an option
input, the metric algorithm runs on the fly and outputs a
result table above the timelines (shown in Figure 5).

• Issue Selector (D, left) supports the filtering for issues
in a project. The checkbox beside the issue key includes,
respectively removes, a timeline for this issue.

• Timeline Area (E, middle) contains for each selected issue
a separate timeline. A single timeline shows all events
that occurred during the issues lifetime. By hovering over
a single event additional information is displayed (see
Figure 4).

• Event Selector (F, right) lists all the symbols, i.e., event
types, that may occur on a timeline. Un/selecting a
symbol hides/includes all corresponding event instances
from all timelines.

V. QUALITATIVE EVALUATION

A. Study Design

We conducted semi-structured interviews with four stake-
holders (i.e., actual end-users of the prototype): team-leads
and group-leads. Group-leads are responsible for the engi-
neers in their group and assign work packages to them.
Whereas team-leads are responsible for the group-leads and
assign them projects and want frequent updates about project
progress and workload. Each (separate) interview consisted of
an introduction of the prototype including explanation of the
metrics, used data, and user interface features. Subsequently,
each participant was asked to assess three issues with respect
to identifying coordination problems (see V-D). Thereafter,
participants were asked to choose the three most insightful



Fig. 3. Prototype screenshot.

Fig. 4. Example icon hover-over information for status, assignee changes as well as comments.

Fig. 5. Prototype screenshot for metric M6.

metrics (see V-E), score the user interfaces on a Likert scale
from 1 to 5 starts (5 stars being best) along Jacob Nielsen’s
heuristics [12] (see V-F), before providing free-form feedback
on positive and negative impression as well as ideas for
additional prototype features.

B. Data Set

The participants had access to data from four projects via
the prototype. These four real ACME projects are: P1, a
low-priority Android app development project; P2 and P3,
two business-critical Android app development projects; and
project P4 integrating two types of recreational activities that
involved experts beyond front-end, business logic, design, and

TABLE I
DEPARTMENT PREFIXES

Department Prefixed short name
Development Web devW
Development Client devC
Database db
Graphics gfx
Product & Project Management ppm
Quality Assurance qa
Marketing mkt
IT Administration adm
Controlling ctrl
CIO cio

database engineering (e.g., marketing and legal departments).
The four projects P1–P4 contain a total of 1017, 2676,
1052, and 939 issues, respectively. During data extraction, the
department prefixes in Table I were added to the anonymized
engineer ids.

C. Participant Demographics

The voluntary participant list consisted of two team-leads
and two group-leads. The job title for both team-leads is
“Teamlead WebDev”. Group-lead job titles were “Grouplead
Architecture & Performance” and “Grouplead App” thus span-
ning a range of the industry partner’s engineering departments.
The group-leads are in their position since 0.5 and 1 year,
the team-leads 1 and 10 years with software engineering



experience for 12 and 5 years, and for 6 and 17 years,
respectively.

D. Task: Issue Assessment

Each participant received the same three issues selected
from across three projects. They were asked to assess these
issues only using timelines and metrics (from the whole
respective project) with no additional information from Jira
available (see Figure 6 for the timelines of the three issues:
BETDB-1475, BAH-71, WWW-7370). The issues BETDB-
1475 and BAH-71 were chosen, because they show problems
in organization and workflow. The issue WWW-7370 repre-
sents a normal issue without anomalies. Since this task was
part of an interview, we report the answers for the following
two questions together:

• Can you spot any problem that occurred during the issues’
lifetimes?

• Can you identify high coordination efforts?
BETDB-1475 (Figure 6 top)

BETDB is an issue primarily involving the database team.
Every participant noted that status changes appear in quick
succession from which they concluded (also from experience):
the workflow for handling database issues is badly designed.
When an SQL query needs to be fixed, nearly the whole
workflow has to be executed again, except for an initial
approval step. One problematic aspect, as mentioned by one of
the participants, is that it is not clearly defined what should be
done in the approval process. Furthermore approval does not
seem to work if issues are re-opened that often. Participants
remarked that the ill-design workflow is mitigated currently
by the database team reacting very quickly on changes and
immediately tackling them so that long delays are prevented.

Another hypothesis postulated by the participants is that
requirements were not written well enough. This hypothesis
is based on the fact that preparation (at the beginning of the
lifetime) lasted one month and this is not the usual case. This
is a problem because other teams have to wait. Also the issue
was often re-assigned within the database team and it was also
once re-assigned to a developer.

BAH-71 (Figure 6 bottom)
For this issue all participants identified problems in how
milestone and status fields are used and the overall lifetime
of project issues. All participants stated that the lifetime is
very long and it has to be asked if it was planned for that
long at the beginning. Furthermore they mentioned that the
issue was moved a lot to other milestones without any work in
between and this indicates that issue planning is not efficient.
Also status for issues are not handled correctly. Some are
superfluous, e.g. “QA Test” which indicates that the whole
project is in testing. However sub-issues are already tested
before and the status does not make sense at project level.
This problem is supported by the event on March 31st, where
status changed from “In Progress” to “Internal Review” to
“External Review” and then to “Softwaredesign”. A participant
mentioned that it is not possible to review specifications of
a whole project within a single day. Furthermore a project

TABLE II
MOST VALUABLE METRICS FOR PARTICIPANTS

Metric GL1 GL2 TL1 TL2
M1 x x x x
M3 x x x
M5 x
M6 x x
M9 x

M10 x

of this size should not stay one month in the design-stage,
this is usually done faster. At the other end it seems that the
whole project was tested in only three days which also cannot
have occurred in reality. It was mentioned that the end of the
timeline (beginning in May) represents the usual workflow.

WWW-7370 (Figure 6 middle)
All participants declared that this is the usual workflow of a
developer issue. This is the ideal case and it was probably a
simple bug fix.

Participants identified the three causes for these specific
issues mainly through timeline investigations. When the par-
ticipants wanted to analyze the whole project they used the
metrics. When a result of a metric was displayed they used
timelines to analyzed the outliers (e.g. issues with minimum
or maximum metric values).

E. Top Rated Metrics

The next question asked the participants to select the three
most valuable metrics for their work (see Table II GL =
group-lead, TL = team-lead). We further report summarized
participant statements regarding the applicability of a metric
together with the historical timeline visualization.

As shown in Table II, every participant listed Metric 1 (Issue
resolved/closed date <= issue due date) as one of the most
valuable metrics. For the participants the metric is suitable for
comparing projects and the timeline visualization can assist in
answering the following questions:

• How long is an issue at a specific department?
• How was the project planned?
Metric 3 (Fix version wasn’t changed) was mentioned

by 3 participants. It may indicate work overload and the
visualization of the affected issue (and other contemporary
issues) may provide insights to:

• Why were issues moved?
• How many issues are moved to the backlog or come from

the backlog?
• Was an issue planned for an unrealistic time-frame?
Metric 5 (Re-open distance to due date) assists in finding

out why issues were re-opened and the visualization supports
detecting if there is a pattern for the re-open changes.

Metric 6 (Assignee Changes) supports investigations if
requirements were not formulated clearly or if perhaps task
responsibilities were vague.

Metric 9 (Issue re-assignments without status changes)
highlights problems with long-running issues and visualization
provides clues whether the workflow should be revised.



Fig. 6. Issues under evaluation by study participants.

TABLE III
AVERAGE TOOL SCORES.

Measure Average
Responsiveness (performance with a large amounts of data) 4.25
Forgiveness (allows exploration) 4.00
Intuitivity (easy to navigate) 4.00
Icons & Symbols understandable 4.00
Information overload (sufficient/too much information) 4.50
Low learning curve (easy to understand) 4.00
Match to the real world (terminology) 3.25
Flexibility/Efficiency of use (expert vs novice) 4.00

Metric 10 (Duration between re-assignment and subsequent
status change) helps a participant to identify poorly planned
projects.

F. Usability Scores

The next part of the questionnaire asked the participants to
rate the tool on a Likert scale of 1 (not good) to 5 (very good).
Table III reports the chosen eight aspects (based on Nielsen’s
heuristics [12]) and the average participant rating. Given the
prototypical nature of our tool, the participants rated it very
well across the eight aspects, with exception to “Match to real
world (terminology)”. Here participants remarked that some
metric names could be improved to more accurately convey
their semantics.

G. Discussion

The answers to the two questions within scope of the
assessment task (see Subsection V-D) revealed that metrics
allow for quickly analysing a project and finding anomalies.
When investigating an issue in more detail, the participants
always used the timeline visualization. The feedback on the
tools usability (see Subsection V-F) lets us assume that the
Project Inspector prototype was sufficiently mature to assist
the participants in their task. Most explicit negative criticism

by participants concerned minor usability aspects such as tool
tips, descriptions, font size.

In the free-form feedback part, participants explicitly high-
lighted the usefulness of combining metrics and timelines,
quickly finding process flaws in short time, comparing
projects, and the prototype’s simple design. Participants even
suggested as future work to intensify this aspect by highlight-
ing the events on the timeline that are relevant to the chosen
metric.
Key Observation 1: switching back and forth between metrics
and timeline is essential to quickly, easily obtaining insights
into situations that would benefit from process improvement.

Participants also noted that for properly interpreting metrics
and timelines, knowledge about how Jira is used by the teams
is necessary: for understanding based on what data/events
a metric is derived, but also to understand when engineers
deviate from expected process behavior. During metric de-
velopment our industry co-author but also the case study
participants noticed that state transitions occurred often within
unreasonable long or short time, implying that engineers were
not accurately following the prescribed process. As poten-
tial future work, participants suggested to include additional
coordination-centric meta information such as displaying the
department of the engineer that made a status change.
Key Observation 2: an iterative cycle of metric selection,
data collection, and metric interpretation is vital for ensuring
that the metrics really measure something meaningful and for
identifying additional useful metrics. Being able to flexibly
integrate new or updated metrics is thus a key requirement, as
enabled by our prototype.

The scoring of metrics (see Subsection V-E) indicated that
not all metrics were considered immediately useful during
the assessment task. The most useful metrics either utilized
changes to re-assignment of issue responsibility, state changes,
or date changes. Participants mentioned in the free-form part



of the questionaire the lower-than-initially-expected usefulness
of comment-centric metrics. They noted that the semantics of
comments would need to be considered as well (most likely
also other informal communication channels such as skype)
and still potentially miss relevant face-to-face communication
during the occasional physical meetings.
Key Observation 3: avoid, if possible, message content-based
metrics (e.g., based on analysing comments, emails, etc.) that
would require extensive coverage of multiple channels.

H. Threats to Validity

Internal Validity. We address researcher bias by analyzing
data from an actual company rather than conducting controlled
experiments. The approach works on arbitrary issue events and
was not specifically tailored to Jira issues or the used dataset.

External Validity. Rather than claiming for wide generaliz-
ability of our results, we argue in line with Briand et al. [13]
that context-driven research will yield more realistic results. In
this paper, we thus evaluated the usefulness of the process met-
rics and issue timeline visualization with multiple engineers
working at our industry partner. We analyzed data from this
single company only as such data from real-world, industrial
environments is extremely hard to get. Companies are very
reluctant to provide insights into their working processes at
that level of detail. As different engineers and roles (e.g.,
database expert, designer, team lead) have different concerns,
they might evaluate the metrics’ usefulness differently. The
positive feedback from multiple engineers familiar with the
development processes under study, however, at least shows
that the approach is applicable and indeed useful in the
observed context.

We make no claim that our approach will yield equally
useful results when applied to data from a Jira server used
for open-source development. Often these servers, such as
hosted by the Apache Software Foundation3 provide only the
default issue types and issue states and thus require engineers
to limit their coordination to processes based on this limited
set of states, or apply other non-structured mechanisms such
as comments, mailing-lists, and tacit knowledge to manage
processes. Even less structured are issues in projects hosted
on GitHub. GitHub issues4 are either “Open” or “Closed”, any
intermediary state needs managing via arbitrary labels (i.e.,
tagging) with no support for defining or restricting valid
transitions. This restrict the ability to determine fine-granular
metrics. The visualization prototype, however, is flexible to
incorporate custom build metrics as long as they are provided
with the JSON data items in the CouchDB.

Engineers assigned to departments and roles are a second,
context-specific characteristic of the analyzed data set. Jira
itself is unaware of roles (i.e., who should be changing a
issue’s state) and hence such information cannot easily be
extracted via its REST API. As many of the metrics derived
from the data set include roles, we cannot infer how useful our

3https://issues.apache.org/jira
4https://help.github.com/articles/about-issues/

approach will be for environments where no role information
is available or where roles and departments are not clearly
assignable. This will often be the case in open-source projects
because they rarely exhibit a clear department and/or role
assignment structure. Hence a comparison of the four projects,
respectively the metric usefulness, to open source projects
would make little sense.

VI. RELATED WORK

Issue trackers have become an important tools for teams
to coordinate their work. Managing the increased number of
issues, however, has become a challenge [14] that multiple
researcher aim to address.

Luijten et al. [5] introduced a tool to generate three different
views that enable assessment of the issue handling process:
a high-level (Issue Churn View), a quantitative (Issue Risk
Profiles) and a detailed life-cycle (Issue Lifecycle View) view.
Knab et al. [15] visualize the duration of a process step
(submitted, in analysis, in resolution, in evaluation) with a
pie chart and provide a state transition view for problem
reports.

Sarma et al. [4] proposed Tesseract, a socio-technical de-
pendency browser that enables exploration of relationships
between artifacts, developers, bugs, and communications, for
example highlighting developers that are modifying interde-
pendent code but are not communicating with each other.

Dal Sassc and Lanza [6] implemented in*Bug, a web-based
software visual analytics platform. Extracting data from bug
tracking systems, different panels describe highlevel informa-
tion such as duration (as a horizontal stacked bar chart) and
status of bugs as well as fine grained views describing changes
to a bug report’s properties.

Similar, D’Ambros et al. [16] focus on becoming aware
of critical issues. Their “Bug Watch” visualization helps to
understand the various phases that it traversed. They note that
the criticality of a bug is not only dependent on its severity
and priority but also on its life cycle. Frequently opened bugs
indicate deeper problems.

Halversion et al. [17] describe problematic patterns of
change management for example recurrent loops (e.g. repeat-
edly resolving and reopening or reassigning) or unattended
issues (when an issue remains too long without resolution).

Tüzün et al. [18] describe their progress towards a unified
project monitoring solution based on the Essence language and
kernel. Also Brandt et al. [19] build on the Essence framework
for project state visualization but focus on a Kanban style
visualization rather than metrics and issue history.

Poncin et al. [20], [21] introduced the Framework for
Analyzing Software Repositories (FRASR) for combining data
from source code repositories, email lists, and bug trackers.
They subsequently utilize the ProM process mining framework
for obtaining insights such as classifying developers in open
source software projects to roles such as project leader, core
member, peripheral developer, bug fixer, or reader. They also
analyzed the typical transitions between bug report states on
Bugzilla.



Gupta et al. [22] conducted process mining across an
issue-tracking system, a code review system, and a version
control system. They map events from these systems into
a single process (based on states) and determine transition
occurrences. Based on this annotated transition diagram, they
analyze the bug-fixing process from reporting to resolution
to discover bottlenecks, deviations from the intended process,
joint activities, and work handover.

In our previous work, we investigated an alternative ap-
proach to defining explicit metrics [23]. We applied constraints
mining to issue histories from multiple projects to derive
meaningful metrics for describing the software development
process. Such an approach is suitable to identify additional
metrics for integration into our prototype.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an industrial case study and
approach for supporting metric-driven process improvement.
Specifically, we focused on coordination-centric metrics and
consequently targeted process-related data and events in our
evaluation prototype Process Inspector. Qualitative analysis
with team-leads and groups-leads from our industry partner
demonstrated that the combination of metric data with issue
timeline visualization is a powerful approach to obtain process
insights and quickly identify flaws in the process, inefficient
coordination in issues, and comparing coordination aspects
across projects.

As part of future work, we plan to improve the prototype
along the received feedback, but more importantly, evaluate
the use of the prototype across a project’s lifetime. This
includes also evaluating to what extent these metrics are able to
detect concrete differences when project teams are structured
vertically as opposed to horizontally.

ACKNOWLEDGMENT

This work was supported in part by the Austrian Science
Fund (FWF): P29415-NBL funded by the Government of
Upper Austria; and the FFG, Contract No. 854184. Pro2Future
is funded within the Austrian COMET Program—Competence
Centers for Excellent Technologies — under the auspices of
the Austrian Federal Ministry of Transport, Innovation and
Technology, the Austrian Federal Ministry for Digital and
Economic Affairs and of the Provinces of Upper Austria
and Styria. COMET is managed by the Austrian Research
Promotion Agency FFG.

REFERENCES

[1] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality,” in Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, 2008, pp. 521–
530.

[2] M. E. Sosa, S. D. Eppinger, M. Pich, D. G. McKendrick, and S. K. Stout,
“Factors that influence technical communication in distributed product
development: an empirical study in the telecommunications industry,”
IEEE transactions on engineering management, vol. 49, no. 1, pp. 45–
58, 2002.

[3] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 864–878, 2009.

[4] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development,” in Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009, pp. 23–33.

[5] B. Luijten, J. Visser, and A. Zaidman, “Assessment of issue handling
efficiency,” in Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE, 2010, pp. 94–97.

[6] T. Dal Sassc and M. Lanza, “A closer look at bugs,” in Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on.
IEEE, 2013, pp. 1–4.

[7] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[8] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[9] D. Šmite, C. Wohlin, Z. Galviņa, and R. Prikladnicki, “An empirically
based terminology and taxonomy for global software engineering,”
Empirical Software Engineering, vol. 19, no. 1, pp. 105–153, 2014.

[10] T. J. Allen et al., “Managing the flow of technology: Technology
transfer and the dissemination of technological information within the
r&d organization,” MIT Press Books, vol. 1, 1984.

[11] P. Diebold and S. A. Scherr, “Software process models vs descriptions:
What do practitioners use and need?” Journal of Software: Evolution
and Process, vol. 29, no. 11, pp. e1879:1–e1879:13, 2017.

[12] J. Nielsen, Usability engineering. Elsevier, 1994.
[13] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The

Case for Context-Driven Software Engineering Research: Generalizabil-
ity Is Overrated,” IEEE Software, vol. 34, no. 5, pp. 72–75, 2017.

[14] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in Proceedings of the 2005 OOPSLA workshop on Eclipse
technology eXchange. ACM, 2005, pp. 35–39.

[15] P. Knab, B. Fluri, H. C. Gall, and M. Pinzger, “Interactive views for
analyzing problem reports,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on. IEEE, 2009, pp. 527–530.

[16] M. D’Ambros, M. Lanza, and M. Pinzger, “” a bug’s life” visualizing a
bug database,” in Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007. 4th IEEE International Workshop on. IEEE,
2007, pp. 113–120.

[17] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg, “Designing
task visualizations to support the coordination of work in software
development,” in Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work. ACM, 2006, pp. 39–48.

[18] E. Tüzün, Üsfekes, Y. Macit, and G. Giray, “Towards unified software
project monitoring for organizations using hybrid processes and tools,”
in 2019 IEEE/ACM International Conference on Software and System
Processes (ICSSP), May 2019, pp. 115–119.

[19] S. Brandt, M. Striewe, F. Beck, and M. Goedicke, “A dashboard for
visualizing software engineering processes based on essence,” in 2017
IEEE Working Conference on Software Visualization (VISSOFT), Sep.
2017, pp. 134–138.

[20] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in Proc. of the 15th European Conference on
Software Maintenance and Reengineering. IEEE CS, 2011, pp. 5–14.

[21] ——, “Mining student capstone projects with FRASR and ProM,” in
Proc. of the ACM International Conference Companion on Object Ori-
ented Programming Systems Languages and Applications Companion.
ACM, 2011, pp. 87–96.

[22] M. Gupta, A. Sureka, and S. Padmanabhuni, “Process mining multiple
repositories for software defect resolution from control and organiza-
tional perspective,” in Proc. of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 122–131.

[23] T. Krismayer, C. Mayr-Dorn, J. Tuder, R. Rabiser, and P. Grünbacher,
“Using constraint mining to analyze software development processes,”
in Proceedings of the International Conference on Software and System
Processes, ICSSP 2019, Montreal, QC, Canada, May 25-26, 2019,
S. M. S. Jr., O. Armbrust, and R. Hebig, Eds. IEEE / ACM, 2019, pp.
94–103. [Online]. Available: https://doi.org/10.1109/ICSSP.2019.00021


